Vibration therapy in orthodontics: Realising the benefits

Author: Dr Amit Lala, USA

Introduction to vibration therapy—multiple potential benefits

Accelerated orthodontics and vibration therapy to fast track orthodontic tooth movement (OTM) have been hotly debated topics in the orthodontic industry in recent years. Periodontally Accelerated Osteogenic Orthodontics (PAOO) techniques such as osteotomy, open flap corticotomy, and piezocision have been shown to decrease treatment time.1 Unfortunately, these classical approaches have had limited patient acceptance because of their invasiveness and side effects.2 In the last several years, micro-osteoperforation, which takes advantage of the same biological regional acceleratory phenomenon as these classical techniques, has been gaining rapid clinical adoption because of the simplicity of its chairside microinvasive nature.3

There is also growing evidence that the application of mechanical energy-based therapies such as vibration can stimulate and accelerate bone formation and possibly bone remodelling.4–7 Orthodontic tooth movement, caused by the application of light continuous forces that induce bone formation and remodelling, could logically be accelerated by the application of vibrational force, with the benefit of reducing the overall treatment time. Since 2008, AcceleDent (OrthoAccel Technologies) has offered a daily use vibration device, offering the promise of accelerated orthodontic treatment based on delivering mechanical stimulation to the dentition. At this point, research on the efficacy of this device in accelerating OTM has been mixed, and clinicians debate its value.

The debate on vibration therapy as it applies to accelerated orthodontics in general, and the effectiveness of the AcceleDent device specifically, should consider other factors in evaluating efficacy. First, there is a distinct possibility that frequency optimisation of the devices concerning bone formation/remodelling has not been established. AcceleDent operates in a low frequency range, however, research points towards the benefit of high frequency in bone modulation. Secondly, current research indicates that high frequency low magnitude (HFLM) vibration therapy as applied to orthodontic treatment may have multiple potential benefits, including, but not limited to, accelerated OTM.

This article will discuss these additional benefits, including faster more efficient aligner therapy when used as a nightly seating tool, relief of normal orthodontic discomfort from new tight fitting aligners and routine adjustments to fixed appliances, and enhancement of orthodontic retention. Additionally, it will touch upon evidence that HFLM vibration is useful in increasing bone density and trabecular bone thickness suggesting applications in implant dentistry and prosthodontics.

Current vibration devices used in orthodontic therapy

As mentioned previously, the most common, commercially available, vibration device for orthodontic treatment is AcceleDent manufactured by OrthoAccel Technologies. This device delivers vibrational frequency of 30 Hz and requires 20 minutes per day user wear time.

Several early studies on the AcceleDent device seemed to demonstrate higher rates of OTM than the established norms.8–10 However, there are other more recent studies that have failed to establish the advantages of the same therapy. A study by Woodhouse et al. (2015) analysed the AcceleDent device to demonstrate its effect on OTM in extraction cases. They found that the supplemental vibrational force did not significantly increase rates of orthodontic alignment with a fixed appliance.11 Another comprehensive report on vibration therapy by investigators Yadav et al. (2015) concluded that low frequency mechanical vibration using AcceleDent had no significant effect in accelerating tooth movement.12

The recent studies regarding the apparent ineffectiveness of AcceleDent may be explained by the
relatively low vibrational frequency of the device. For purposes of this discussion low and high frequency are defined as:

- Low frequency – less than or equal to 45 Hz;
- High frequency – greater than or equal to 90 Hz.

In a 2010 study by Judex and Rubin, ovariectomised rats were subjected to either low or high frequency vibration. Bone formation rates for subjects treated with high frequency were 159% greater when compared to controls, whereas bone formation for low frequency rats were not significantly different than controls. Trabecular bone volume and thickness were also significantly higher for subjects treated with high frequency.13 Similarly Alikhani et al. found a statistically higher rate of alveolar bone formation (+190%) at higher frequencies, with a 5 min/day application. In short, the most pronounced osteogenic effects of vibration seem to occur well above the AcceleDent’s low vibrational frequency.14, 18

Practically speaking, five minutes of daily wear time may be beneficial, as it will reduce the dependency on significant patient compliance. In order to realise the maximum benefits of vibration therapy, shorter wear times would logically increase compliance, and improve results. Given all other factors being equal, the studies suggest that a higher frequency device would deliver equivalent amounts of HFA Energy to the dentition in a significantly reduced timeframe.

The future of vibration therapy: Expanded application, multiple benefits

The apparent limitations of current commercially available vibration devices should not diminish the potential importance of vibration therapy. Setting aside applications such as implant dentistry and prosthodontics suggested by the osteogenic properties associated with vibration therapy, there are at least four important clinically beneficial orthodontic applications that can be anticipated. These potential applications are: 1) as a nightly clear aligner seating device; 2) analgesia; relief from normal discomfort associated with orthodontic treatment; 3) accelerated orthodontic tooth movement; and 4) enhancement of retention to minimise orthodontic relapse. What follows is a brief examination of each of the four applications of HFLM vibration as an orthodontic therapy.

Non–pharmacological analgesia

Discomfort or pain is a common side effect of orthodontic treatment. The forces applied to the dentoalveolar complex which are required to move teeth, compress the periodontal ligament (PDL) causing inflammation. Pain is most notable when seating a new aligner, or immediately after wire changes and adjustments, when pressure on the PDL is at its greatest, and diminishes as the aligner material expands, and/or the dentition comply. In a study accepted in September 2015 by the Angle Orthodontist for future publication, Lobere et al found in a randomised clinical trial that vibration therapy resulted in significantly lower perceived pain and less OTC medication use.15 One theory is that vibration restores normal circulation to the PDL, which is otherwise restricted by compressive forces. Increased blood flow intercepts the ischaemic response and limits inflammation.

Graph 1: Relative impact of frequency on bone morphology

Increases in bone volume for high frequency subjects was 25% higher than controls; low frequency subjects were not statistically different than controls.
Accelerated OTM

It is well established that bone undergoes formation and resorption in response to external loading such as gravitational forces, as well as to internal loading such as muscular activity. Recent research with both animal and human models have demonstrated anabolic responses such as bone growth and changes in bone mineral density in response to vibration. Since OTM is fundamentally based on bone remodelling (formation and resorption) there is little doubt that HFLM vibration has the potential to favourably impact OTM.

In a recent split-mouth randomised trial involving bilateral maxillary canine distraction after first premolar extraction on 15 human subjects, Leethanakul et al. (2015) investigated the impact of vibration on accelerated tooth movement, as well as on cytokine activity related to osteoblast and osteoclast differentiation (specifically IL-1β levels in GCF). The patients applied vibration to the experimental canine using a commercially available electric toothbrush operating at high frequency (125 Hz). This study found significantly increased tooth movement (~+61%) accompanied by a three-fold increase in average IL-1β levels.

Enhanced retention

Vibration therapy warrants the attention of the scientific community to further explore its effect during the orthodontic retention phase. Scientific literature documents that the primary reason for orthodontic relapse is the inability of collagen fibres (transseptal fibres and PDL) to reorganise quickly after the completion of orthodontic treatment and the delay in new bone apposition. Studies suggest that vibration can have potentially favourable impacts on both bone formation and reorganisation of the PDL fibres.

A study from Rubin et al (referred above) states that vibration therapy by itself has always been anabolic, which means it led to bone apposition and a decrease in bone resorption. Reports have documented an increase in bone density, bone formation, Type-1 collagen and non-collagenous matrix protein expression in response to the therapy.

Recent studies by Yadav et al. (2015) and Alikhani (2012) (both referred above), have demonstrated that vibration therapy improved not only bone density, but also restored the integrity and thickness of the collagen fibres. With evidence suggesting that vibration therapy positively impacts both bone morphology and the PDL fibres, vibration during the retention phase may play a significant role in preventing orthodontic relapse.

Conclusions

1. The current debate over vibration therapy and its impact on accelerated orthodontic tooth movement, should consider other potential benefits of this therapy including applications for aligner seating, relief of normal orthodontic pain, enhanced retention and applications to implant dentistry and prosthodontics.

2. It can be hypothesised that a vibration device operating in the high frequency range would likely be most effective in creating OTM as well as offering shorter wear times impacting compliance. The most commonly available commercial device operates at a frequency that is below thresholds having statistical significance in creating orthodontic tooth movement as documented in several studies.
References

about

Dr Amit Lala, DDS, PhD, earned his Master’s Degree in Oral Biology from the University of California in Los Angeles. He then earned his DDS and PhD in Oral Biology from SUNY Buffalo, NY. He also completed his postgraduate residency in Orthodontics at SUNY, Buffalo, NY. Dr Lala is affiliated with Harvard School of Dental Medicine as a lecturer in the fields of Orthodontics and Oral Biology.